Module: Biomechanics and Biophysics

<table>
<thead>
<tr>
<th>Level</th>
<th>Master</th>
<th>Short Name</th>
<th>Bio</th>
</tr>
</thead>
</table>

Responsible Lecturers

Prof. Dr. Nestler, Bodo

Department, Facility

Mechanical Engineering and Business Administration

Course of Studies

Mechanical Engineering, Bachelor

Compulsory/elective

Compulsory elective

ECTS Credit Points

5

Semester of Studies

2

Semester Hours per Week

4

Length (semesters)

1

Workload (hours)

150

Frequency

WiSe

Presence Hours

60

Teaching Language

English

Self-Study Hours

90

The following section is filled only if there is **exactly one** module-concluding exam.

Exam Type

Written Exam

Exam Language

English

Exam Length (minutes)

60

Exam Grading System

One-third Grades

Learning Outcomes

- The students shall acquire consolidated knowledge of physical, electrical, and mechanical principles of medical products.
- The students shall be enabled to contribute to the development of medical products according to relevant standards.
- The students shall understand the basics of the application of physical/technical models to biological/medical systems.

Participation Prerequisites

The previous section is filled only if there is **exactly one** module-concluding exam.

Consideration of Gender and Diversity Issues

✔ Use of gender-neutral language (THL standard)

✘ Target group specific adjustment of didactic methods

✘ Making subject diversity visible (female researchers, cultures etc.)

Applicability

Remarks
Module Course: Biomechanics and Biophysics (lecture)
(of Module: Biomechanics and Biophysics)

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Lecture</th>
<th>Form of Learning</th>
<th>Presence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mandatory Attendance</td>
<td>no</td>
<td>ECTS Credit Points</td>
<td>5</td>
</tr>
<tr>
<td>Participation Limit</td>
<td></td>
<td>Semester Hours per Week</td>
<td>4</td>
</tr>
<tr>
<td>Group Size</td>
<td></td>
<td>Workload (hours)</td>
<td>150</td>
</tr>
<tr>
<td>Teaching Language</td>
<td>English</td>
<td>Presence Hours</td>
<td>60</td>
</tr>
<tr>
<td>Study Achievements ("Studienleistung", SL)</td>
<td></td>
<td>Self-Study Hours</td>
<td>90</td>
</tr>
<tr>
<td>SL Length (minutes)</td>
<td></td>
<td>SL Grading System</td>
<td></td>
</tr>
</tbody>
</table>

The following section is filled only if there is a course-specific exam.

<table>
<thead>
<tr>
<th>Exam Type</th>
<th>Exam Language</th>
<th>Exam Gradining System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning Outcomes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Participation Prerequisites</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The previous section is filled only if there is a course-specific exam.

Contents
- Basic static mechanics
- Deformation behaviour of viscoelastic materials
- Biomechanics of the human locomotive system:
 - Mechanical behaviour of biological tissues (bone, tendons/ligaments, cartilage, synovial fluid)
 - Loads acting in the locomotive system (forces/moments, stress/strain): hip joint, femur, knee joint, foot, spine
 - Biomaterials:
 - Artificial joints (endoprostheses):
 - types, chemical composition, biocompatibility, corrosion resistance, mechanical properties
 - Bone fractures (healing and fixation):
 - types of fracture healing, internal fixation, external fixation
 - Physical principles and their application in:
 - Liquid and gas flow in the human body
 - Electrical and magnetic interactions with biological systems (cells)
 - HF surgery
 - EEG
 - EMG
 - MRI
 - Knowledge about lecturer’s current research projects
<table>
<thead>
<tr>
<th>Literature</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>• P. Brinckmann, W. Frobin, G. Leivseth, (Hrsg.): Orthopedic Biomechanics, Thieme, 2015</td>
<td></td>
</tr>
<tr>
<td>• Thews et al.: Human Physiology. Springer (1989)</td>
<td></td>
</tr>
<tr>
<td>• Webster: Medical Instrumentation, 3rd edition, Wiley and Sons.</td>
<td></td>
</tr>
<tr>
<td>• Tritthart, H.: Medizinische Physik und Biophysik. Schattauer (2001)</td>
<td></td>
</tr>
<tr>
<td>• Kresse, H.: Kompendium Elektromedizin. Siemens (1978)</td>
<td></td>
</tr>
</tbody>
</table>